metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ming-Li Liu, Jian-Min Dou,* Da-Qi Wang and Da-Cheng Li

School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China

Correspondence e-mail: jmdou@lctu.edu.cn

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.013 Å R factor = 0.067 wR factor = 0.220 Data-to-parameter ratio = 13.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[1-Acetylacetone (2-hydroxybenzoyl)hydrazonato]pyridinecopper(II)

In the title complex, $[Cu(C_{12}H_{12}N_2O_3)(C_5H_5N)]$, the Cu^{II} atom has a square-planar coordination geometry, formed by the tridentate hydrazone and the monodentate pyridine ligands. The distance of 3.706 (4) Å between the centroids of the nearly parallel [dihedral angle 4.9 (5)°] pyridine ring and the benzene ring of a neighbouring complex molecule suggests the existence of π - π stacking.

Comment

Metal-hydrazone complexes, especially copper complexes with acylhydrazone, continue to attract considerable attention as a result of their biological activities and structural versatility (Aruffo *et al.*, 1984; Ainscough *et al.*, 1995; Chan *et al.*, 1995; Ranford *et al.*, 1998). Abu-Ei-Wafa *et al.* (1990) synthesized copper-salicyloyl hydrazones derived from β -diketones, such as O-XC₆H₄C(O)NHN=C(Me)CH₂COR (X = H and OH, and R = Me and Ph), and found that the hydrazones behave as either monobasic or bidentate ligands. During research into the coordinating behaviour of salicyloyl hydrazones derived from β -diketones with Cu atoms in organic phases, the title complex, [Cu(C₁₂H₁₂N₂O₃)(C₅H₅N)], (I), has been prepared. We present its crystal structure here.

The molecular structure of (I) is shown in Fig. 1. The Cu^{II} atom has a square-planar coordination geometry, formed by the tridentate hydrazone and monodentate pyridine ligands, with N atoms in a *trans* arrangement about the Cu atom. The Cu–N and Cu–O bond distances (Table 1) are consistent with the values of 1.930–2.062 and 1.900–1.975 Å found in other complexes with square-planar N₂O₂ coordination geometry (Astheimer *et al.*, 1985). Within the hydrazone group, the C1–O1 distance of 1.289 (8) Å is essentially within the range of 1.29–1.31 Å for enol forms of C–O (Sakarnoto *et al.*, 1989; Yan *et al.*, 1993), indicating that the hydrazone ligand displays the enol form in (I).

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved Received 4 July 2005

Online 30 July 2005

Accepted 25 July 2005

Two symmetry-related molecules of (I), with 30% probability displacement ellipsoids (arbitrary spheres for H atoms), showing the hydrogen bonding (dashed lines) [symmetry code: (ii) -1 + x, y, z].

The packing in (I), showing $\pi - \pi$ stacking between nearly parallel aromatic rings [symmetry code: (iii) $\frac{3}{2} - x, \frac{1}{2} + y, z$]. H atoms have been omitted.

Both intramolecular classical O-H···N hydrogen bonding and intermolecular weak C-H···O hydrogen bonding occur in the crystal structure of (I) (Table 2). As shown in Fig. 2, the pyridine ring is partially overlapped with the benzene ring of a neighbouring complex molecule, with a small dihedral angle of 4.9 (5)°. The distance of 3.706 (4) Å between the centroids suggests the existence of π - π stacking between these rings.

Experimental

A DMF solution (5 ml) of 2-hydroxynaphthaldehyde salicyloylhydrazone (0.25 mmol, 0.076 g) was mixed with a methanol solution

Crystal data $[Cu(C_{12}H_{12}N_2O_3)(C_5H_5N)]$ $M_r = 374.88$ Orthorhombic, Pbca a = 12.503 (5) Å b = 9.894 (4) Å c = 26.88 (1) Å $V = 3325 (2) \text{ Å}^3$ Z = 8 $D_r = 1.498 \text{ Mg m}^{-3}$

Data collection

Siemens SMART CCD areadetector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.604, \ T_{\max} = 0.749$ 15733 measured reflections

Refinement

Refinement on F^2
$R[F^2 > 2\sigma(F^2)] = 0.067$
$wR(F^2) = 0.220$
S = 1.06
2931 reflections
217 parameters
H-atom parameters constrained

Mo Ka radiation Cell parameters from 1882 reflections $\theta = 3.0 - 19.7^{\circ}$ $\mu = 1.33 \text{ mm}^{-1}$ T = 298 (2) K Block, green $0.42 \times 0.29 \times 0.23 \text{ mm}$

2931 independent reflections
1494 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.125$
$\theta_{\rm max} = 25.0^{\circ}$
$h = -14 \rightarrow 13$
$k = -11 \rightarrow 11$
$l = -32 \rightarrow 26$

$w = 1/[\sigma^2(F_0^2) + (0.0595P)^2]$
+ 10.1233P]
where $P = (F_0^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.70 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.66 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1		
Selected	interatomic distances	(Å).

Cu1-O1	1.925 (5)	N1-C9	1.310 (10)
Cu1-O3	1.900 (6)	N2-C1	1.320 (9)
Cu1-N1	1.902 (6)	O1-C1	1.289 (8)
Cu1-N3	1.998 (6)	O3-C11	1.292 (9)
N1-N2	1.394 (9)		

Table 2	
Hydrogen-bond geometry (Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$	
$O2-H2\cdots N2$ $C15-H15\cdots O2^{i}$	0.82 0.93	1.82 2.35	2.547 (8) 3.275 (11)	148 174	
				· · · · · · · · · · · · · · · · · · ·	

Symmetry code: (i) x + 1, y, z.

H atoms were placed in calculated positions with C-H = 0.93 or 0.96 Å and O-H = 0.82 Å, and were refined in riding mode, with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$ or $1.5U_{\rm eq}({\rm methyl} \ {\rm C} \text{ and } {\rm O})$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors acknowledge the support of the Natural Science Foundation of Shandong Province, China (grant No. Y2003B01).

References

- Abu-Ei-Wafa, S. M., Salib, K. A. R., El-Inany, G. & Ismail, T. M. (1990). Synth. React. Inorg. Met.-Org. Chem. 20, 1343–1354.
- Ainscough, E. W., Brodie, A. M., Dobbs, A., Ranford, J. D. & Waters, J. M. (1995). *Inorg. Chim. Acta*, 236, 83–88.
- Aruffo, A. A., Murphy, T. B., Johnson, D. K., Rose, N. J. 1169.
- Astheimer, H., Nepveu, F., Walz, L. & Haase, W. (1985). J. Chem. Soc. Dalton Trans. pp. 315–320.

- Chan, S. C., Koh, L. L., Leung, P. H., Ranford, J. D. & Sim, K. Y. (1995). *Inorg. Chim. Acta*, **236**, 101–108.
- Ranford, J. D., Vittal, J. J. & Wang, Y. M. (1998). Inorg. Chem. 37, 1226– 1231.
- Sakarnoto, M., Itose, S., Ishimori, T., Matsumoto, N., Okawa, H. & Kida, S. (1989). J. Chem. Soc. Dalton Trans. pp. 2083–2088.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Yan, S. P., Cheng, P., Liao, D. Z., Bai, L. J., Jiang, Z. H., Wang, G. L., Wang, R. J. & Yao, X. K. (1993). J. Nankai Univ. 2, 19–25.